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1 Summary
Saint Bitts, LLC have been working on CashFusion, an extension of the privacy protocol
CashShuffle for Bitcoin Cash in which each input and output is validated by a random
player, using a series of cryptographic commitments that allow an uncooperative
participant to be identified and banned.
Saint Bitts, LLC hired Kudelski Security to perform a security assessment of CashFusion,
including architecture review, implementation review and code review with a focus on
the cryptographic components, to ensure that CashFusion can provide the highest level
of privacy and security upon launch.
The repository concerned is:
https://github.com/Electron-Cash/Electron-Cash/tree/cashfusion/plugins/fusion

we specifically audited commit 238b4e0 of the “fusion” plugin, as used by commit
a391bd8 of the Electron-Cash “cashfusion” branch.
Our architecture review was based on the documentation available on:
https://github.com/cashshu�e/spec/blob/master/CASHFUSION.md.
This document reports the security issues identified and our mitigation recommenda-
tions, as well as some observations regarding the code base and general code safety.
A “Status” section reports the feedback from Saint Bitts, LLC’s developers, and includes
a reference to the patches related to the reported issues. All changes have been
reviewed by our team according to our usual audit methodology.
We report:

• 5 security issues of low severity
• 2 observations related to general code safety

The audit was performed jointly by Dr. Tommaso Gagliardoni – Cryptography Expert,
and Yolan Romailler – Senior Cryptography Engineer, with support of Dr. Jean-Philippe
Aumasson – VP of Technology.
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2 Methodology and Overview
In this security audit, we performed five main tasks:

1. informal security analysis of the original protocol;
2. architecture review;
3. actual code review with code safety issues in mind;
4. assessment of the cryptographic primitives used;
5. compliance of the code with the technical documentation provided.

This was done in a static way and no dynamic analysis has been performed on the
codebase. We discuss more in detail our methodology in the following sections.
2.1 Protocol Security & Architecture Review

We studied the protocol and architecture in view of the claimed goals and use cases,
and we inspected the provided documentation, looking for possible attack scenarios.
We focused on the following aspects:

• possible threat scenarios;
• necessary trust assumptions between involved parties;
• resistance to deanonimization attacks;
• effectiveness of the blame capabilities;
• edge cases and resistance to protocol misuse.
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2.2 Code Safety

We analyzed the provided code, checking for issues related to:
• general code safety and susceptibility to known vulnerabilities;
• poor coding practices and unsafe behavior;
• leakage of secrets or other sensitive data through memory mismanagement;
• susceptibility to misuse and system errors;
• safety against malformed or malicious input from other network participants;
• error management and logging.

2.3 Cryptography

We analyzed the cryptographic primitives and components, as well as their implemen-
tation. We checked in particular:

• matching of the proper cryptographic primitives to the desired cryptographic
functionality needed;

• security level of cryptographic primitives and of their respective parameters (key
lengths, etc.);

• safety of the randomness generation in the general case and in case of failure;
• safety of key management;
• assessment of proper security definitions and compliance to the use cases;
• checking for known vulnerabilities in the primitives used.

2.4 Technical Specification Matching

We analyzed the provided documentation, and checked that the code matches its
specification. We checked for things such as:

• proper implementation of the protocol phases;
• proper error handling;
• correct implementation of the blame phase;
• adherence to the protocol logical description.
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2.5 Notes

It is important to notice that, although we did our best in our analysis, no code
audit assessment is per se guarantee of absence of vulnerabilities. Our effort was
constrained by resource and time limits, and in the scope of the agreement between
Saint Bitts, LLC and Kudelski Security.
The specification of CashFusion is not formal and lots of the implementation details
are not being explicitly covered by any reference document.
In assessing the severity of some of the findings we identified, we kept in mind both
the ease of exploitability and the potential damage caused by an exploit.
2.6 Conclusions

Overall, we believe that CashFusion addresses an existing problem in managing
anonymized transaction in Bitcoin Cash by adopting a reasonable security tradeoff.
Weobserve that the security analysis of CashFusion considersmany important aspects,
although it can certainly be improved in the future.
The protocol is very complex, which limits the accessibility for a sound analysis and
security evaluation. There are some limitations (for example the need to use a trusted
server, the strict timing requirements for connecting clients, and limited security
assurances regarding combinatorial attacks), but in general we believe that CashFusion
offers a practical way to recombine fragmented anonymous transactions in a secure
way without the server being able to steal the funds or deanonymize users.
We further believe that the CashFusion codebase provided by Saint Bitts, LLC, that we
reviewed, is implementing the protocol as correctly as described and we did not find
any evidence of malicious intent or potential backdoor in the codebase.
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3 Architecture review
This section reports our observations regarding the general architecture of the
Cashfusion system.
This assessment is based on the documentation provided by Saint Bitts, LLC.
Generally, the documents we reviewed focus on technical solutions, and do not
document processes, best practices or policies, notably regarding:

• Key generation, handling, back-up and recovery processes. For example, threat
model.

• Roles and responsibilities, segregation of duties. For example, between
development and infrastructure teams for the server component.

• Management of credentials to access the server. For example, regarding use of
2FA, back-up, password updates.

• Internal IT and risk policies, for example regarding software and hardware
management, personnel background check and rotation.

• Incident response processes.
CashFusion ismeant to be used as a plugin for users that typically already own a Bitcoin
Cash wallet, which explains why the first point above is not overly documented. We
do however recommend documenting the 4 other items to ensure transparency and
increase trust from CashFusion’s user base.
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3.1 Documentation completeness

Recommendation

The specification document (in the file CASHFUSION.md) describes each phase of the
protocol with a certain level of detail, and discusses some of its security properties
and design rationale. This documentation helps users and reviewers understand
the general logic, but falls short from being a complete specification, which may for
example be necessarily to design formal verification models.
Furthermore, a higher level of assurance could be achieved by providing a thorough
security analysis of the protocol under realistic adversarial conditions. Specifically, we
would recommend to add:

• A threat model, describing at least succinctly the classes of attackers (in terms of
capabilities), and their goals (anonymity compromise, linking, DoS, etc.)

• Refined security analysis of the risks discussed, for example DoS, and how the
blame mechanism could potentially be abused.

• More rigorous analysis of the amount linkage risks (the combinatorial arguments
is a good start.)

• A description of other operational risks and underlying assumptions for the
protocol to operate correctly and securely.

The exercise of working out such documents may in turn reveal overlooked design
aspects or unforeseen optimizations.
Status

As the CashFusion project is maturing, Saint Bitts, LLC is planning to polish up the
documentation significantly.
3.2 Anticipation of BCP/DRP concerns

The CashFusion server being a critical service to ensure the good operation of
the CashFusion protocol, the technical components and processes must anticipate
different types of disasters and be designed to facilitate continuity of operations, for
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example thanks to preventive measures (the current monitoring and alerting setup)
and reactive measures (automated software and services deployment).
The compromise or loss of cryptographic credentials (certificates, authentication
tokens, SSH keys, etc.) should notably be considered as a possible scenario.
Recommendation

We recommend that Saint Bitts, LLC defines and tests recovery processes in various
scenarios in order to empirically estimate the time to recover and identify overlooked
operations. Such scenarios are for example the possible compromise of some access
key, the unavailability of part of the infrastructure, the unavailability of critical staff
members, and so on.
Depending on the business needs of the service, redundant hardware and software as
well as failover service instances and load-balancing might for example be needed.
3.3 Vulnerability management

The cumbersome but necessary process of software and version inventory in the
context of vulnerability management is of high importance for the CashFusion
architecture, because different parties might reuse the same software version (such as
OS and ElectronCash version), and because the server component requires particular
trust.
Vulnerability management entails the inventory and ranking of software components
impacting the risk posture of the system and processes to proactively monitor the
existence of vulnerabilities—such as security audits—as well as processes to learn
about public vulnerabilities, and as importantly, processes to remediate to potential
security risks in a timely manner that minimizes impact on business operations.
Recommendation

Besides the current security audit, we recommend that Saint Bitts, LLC performs a red
team testing exercise modeling insider threat, on a replica of the production system,
especially their server component, as well as a penetration test of the said server
component.
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3.4 Timing enforcement possibly too strict

During switching from one round to another in the CashFusion protocol, in order
to keep synchronization with all the clients, the server enforces a minimum time
threshold of a few seconds, and bans those players who fail to enter the new round
within the given time frame. For example, during connection establishment and
switching from Round 1 to Round 2, the server signals to clients that their pool has
been filled and they need tomove on to the fusion process within 2 seconds. According
to the documentation:

Since clients will expect to receive messages by various times, the server
needs to exclude any clients that move too slowly. In order that the various
clients’ TC are not too dispersed in time, the server should attempt to
simultaneously sendmessage 2 to each client at time TS, and kick any client
that does not respond with a message 3 (see below) within 2 seconds.

However, keep inmind thatmost of these clients will connect to the server through Tor
to preserve their anonymity, possibly from remote locations or behind layers of VPN,
satellite connections, etc. The protocol is assuming a not too asynchronous network,
which might be difficult to guarantee in practice for all locations. It might be the case
that so few seconds is a too tight time window for the players to complete the switch.
Recommendation

We recommend testing this feature with a variable number of clients connecting
from different sources, in different areas with different latencies and networking
infrastructures, in order to find a suitable threshold that does not penalize too much
a large population of clients.
Status

At each stage there are somewhat tight timing tolerances, which is necessary to make
sure all the clients are synchronized so that timing deviations don’t reveal too much
information. Accordingly, the initial timing is intentionally a bit more tight just in order
to wash out any high latency clients before the process gets too far underway.
Although Tor does often have very slow connection times, the latency on an established
connection is fortunately not so high, so issues on this point have not been observed
so far. That said, most users have not been using Tor for the primary connection at
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this stage, Saint Bitts, LLC will keep an eye on this and do some more investigation on
the reliability.
3.5 Unclear documentation

The documentation of CashFusion goes into the details of the cryptographic protocol
with terminology that is at times hard to follow and without proper references to
existing literature. We believe that writing it in a less informal way would substantially
improve its readability. A few examples:

• At a first read, it is unclear that there are actually two different types of nonces,
one sent by the server and one chosen by the client.

• Key life cycles should be better documented. For example, the role of
communication keys is not clear until the blame phase step.

• Certain subprotocols are taken from known literature, but references are not
always provided. Some of them are modified in slight (but not necessarily
harmful) ways. These modifications, and the rationale behind them, are not
always highlighted.

Recommendation

The description of the protocol should be expanded, by including references to existing
literature and explaining the rationale behind deviations where necessary.
3.6 On the possibility of combinatorial linking attacks

In the “Avoiding Amount Linkages Through Combinatorics” section of the documen-
tation, it is analyzed the possibility for a malicious observer to link sets of inputs and
outputs based on the transaction amount. The authors of CashFusion argue that, for
a reasonable amount of players and components, the sheer number of combinations
makes finding these combinations impossible.
However, we notice that this is only true for a pure brute-forcing approach. The
problem in question reminds vaguely of the problem of bin packing where heuristic
algorithms much more efficient than brute-forcing are known.

© Nagravision SA 2020 / All rights reserved. FOR PUBLIC RELEASE Page 11 of 19

https://en.wikipedia.org/wiki/Bin_packing_problem


CashFusion Security Audit – Saint Bitts, LLC

Recommendation

It is not obvious how a direct reduction between the two problems can be found, but
we recommend nevertheless checking carefully this security argument against state-
of-the-art works found in combinatorics literature.
Status

Although it is expected that finding combinations is quite computationally difficult,
CashFusion’s security is not relying on this as a first line of defense, but instead aims
to be in the regime where there are numerous valid partitions (i.e., even if a perfect
algorithm discovered a solution, there would still be no evidence since many other
solutions would be possible.)
That said, Saint Bitts, LLC will keep researching the pragmatic aspect of these
algorithms, since computational difficulty may help as a defense in depth against
linkage, when the number of valid solutions is (for whatever reason) not large enough
for a particular transaction.
3.7 Vulnerability to server collusion

The server is a critical component that needs to be trusted not to collude with any
player in order to attain the privacy guarantees that CashFusion is aiming for. Notice
this is discussed in the Design Trade-Offs section of CashFusion documentation.
Since the linkages between players’ commitments are kept by the server, it suffices to
have one or more players that have somehow colluded with the server to gain some
knowledge of the linkages.
Notice that it is the server who is assigning a new client to a given waiting pool and that
will start the fusion when a pool is filled, whichmean that a rogue server can easily add
the players of its choosing to any pool, thus allowing them to trace transactions in all
pools and all fusions by gathering both the linkage information provided to the rogue
server and the verification data provided to the rogue players.
This is an inherent design decision and is a security trade-off made by CashFusion.
Recommendation

Do not use any random server to run CashFusion and have “trusted”, tested servers
available.
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4 Findings
This section reports security issues found during the audit.
The “Status” section includes feedback from the developers received after delivering
our draft report.
KS-SBCF-F-01: Encryption is misusing AES-CBC

Severity: Low
Description

In encrypt.py, we can see that the encrypted proofs are encrypted using AES-CBC with
a zero padding and an all zeros IV:

1 iv = b'\0'*16

2 if AES:

3 ciphertext = AES.new(key, AES.MODE_CBC, iv).encrypt(plaintext)

4 else:

5 aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv)

6 aes = pyaes.Encrypter(aes_cbc, padding=pyaes.PADDING_NONE)

7 ciphertext = aes.feed(plaintext) + aes.feed()

# empty aes.feed() flushes buffer↪→

8 mac = hmacdigest(key, ciphertext, 'sha256')[:16]

9 return nonce_pub + ciphertext + mac

Furthermore it uses the Encrypt-then-Mac paradigm, which usually requires unrelated
keys for encryption and authentication.
Notice that the use of an all-zero IV is not a problem if you never reuse the same key,
which is the case here since the encryption key is generated on the fly using a Diffie-
Hellman shared secret derivation.
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Also notice that the Encrypt-then-Mac is done using HMAC, which should be resistant
to related key attacks, however this has not been formally proven yet.
These are however poor practices and are not necessarily future-proof.
Recommendation

Using different derived keys for encryption and authentication would be best,
derivation could be done using HKDF typically. Furthermore, including the IV in the
HMAC would be best, as well as using random nonces as IVs.
Notice that none of these recommendations are required per se to guarantee security
in the current state of the codebase. However these would increase maintainability
and avoid future misuses shall the code be changed or refactored.
Status

The all-zero IV is an explicit choice that will be better documented in the code.
The use of unrelated keys for the authentication and the encryption will be enforced
in the next protocol update.
KS-SBCF-F-02: Default binding to all interfaces

Severity: low
Description

In fusion/plugin.py:570 the default value for the bindhost variable is 0.0.0.0
This can lead to issues such as CVE-2018-1281, and is not recommendable.
Status

Saint Bitts, LLC acknowledges the issue.
KS-SBCF-F-03: Default server is not using SSL

Severity: low
Description

It appears that the default server is not using SSL, which would be advisable in order
to guarantee the highest level of trust:
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1 def _get_default_server_list() -> List[Tuple[str, int, bool]]:

2 """

3 Maybe someday this can come from a file or something. But can also

4 always be hard-coded.

5

6 Tuple fields: (hostname: str, port: int, ssl: bool)

7 """

8 return [

9 # first one is the default

10 CashFusionServer('cashfusion.electroncash.dk', 8787, False),

11 CashFusionServer('server2.example.com', 3436, True),

12 ]

Recommendation

Enabling SSL on the server should be done in order to guarantee a higher level of trust
and to limit as much as possible the amount of data a passive attacker listening on the
network can gather.
Status

This is a work in progress and will be fixed.
KS-SBCF-F-04: Presence of magic numbers that are not NUMS

Severity: Low
Description

Magic numbers are found through the codebase. For example, one can find the
following in connection.py:

1 class Connection:

2 # Message length limit. Anything longer is considered to be a malicious server.

3 c
# The all-initial-commitments and all-components messages can be big (~100 kB in large fusions).↪→

4 MAX_MSG_LENGTH = 200*1024

5 magic = bytes.fromhex("765be8b4e4396dcf")

And the string 765be8b4e4396dcf does not appear to be a "nothing-up-my-sleeve"
value1.

1https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number
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Recommendation

This is not really a security concern in this specific case but we recommend using NUMS
values as magic values, whenever these are required.
Status

Saint Bitts, LLC takes NUMS seriously as can be seen in the Pedersen commitment
code on line 41, but here this occurrence is more like a file magic value to
identify the protocol and as such is not a security issue as mentioned in the above
recommendation.
KS-SBCF-F-05: Non-cryptographic Random is used

Severity: low
Description

In the following places in the codebase, the random package is used to generate
randomness:

• in fusion/plugin.py.
• in fusion/covert.py.
• in fusion/server.py.

It appears that it is most notably used in order to shuffle different lists. While not clear
from the protocol description, the said shuffling might be important to ensure privacy
from an adversary that is tapping the network traffic.
The random.shuffle function can take as argument a 0-argument function returning
a random float in [0.0, 1.0[, however using a float to sample a value below a given max
is introducing a bias similar to the so-called “modulo bias”, which is no good when
used with Knuth Shuffle as it is the case in Python’s random package. This is not the
case in the current codebase, as it is instead relying on the default argument of the
random.shuffle function, but this is also relying on a floating-point value in [0.0, 1.0[ if
there is no getrandbits() implemented by the Random class.
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Recommendation

Since Python’s random is known for not being a cryptographically secure PRNG, we rec-
ommend reimplementing Knuth Shuffle using a secure PRNG such as os.urandom().
Furthermore we recommend not importing the random package at all in order to avoid
any future misuse.
Status

Saint Bitts, LLC acknowledges this and the design rule of not importing random will be
kept in the future.
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5 Observations
This section reports various observations that are not security issues to be fixed, such
as improvement or defense-in-depth suggestions.
KS-SBCF-O-01: Using assert in production is not recommended

Throughout the codebase, assert statements are used to verify certain conditions,
such as the fact that the amount is bigger than 0 and other such checks. However,
according to the Python documentation, “assert statements are a convenient way to
insert debugging assertions into a program”, and they are not run when optimization
is requested.
This is not directly an issue, but it might be possible for example that a group of people
wrongly request optimization by using a command line provided by a third party, thus
disabling many required safety checks. We did not characterize the actual impact of
running the codebase in optimized mode.
Notice this issue is inherent to the ElectronCashwallet - which in some cases specifically
relies on the assert behavior
KS-SBCF-O-02: PEP 8 or another coding style is not enforced

The fusion plugin does not appear to enforce a specific coding style. In order to increase
readability and thus maintainability and auditability, we recommend enforcing a
coding style on the codebase.
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6 About
Kudelski Security is an innovative, independent Swiss provider of tailored cyber
and media security solutions to enterprises and public sector institutions. Our team
of security experts delivers end-to-end consulting, technology, managed services,
and threat intelligence to help organizations build and run successful security
programs. Our global reach and cyber solutions focus is reinforced by key international
partnerships.
Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com or https://kudelski-blockchain.com/.

Kudelski Security
Route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland

This report and all its content is copyright (c) Nagravision SA 2020, all rights reserved.
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